
 8/22/2003

Proposal for VPI model data type extensions

This proposal has been prepared by Cadence Design Systems, Inc. for consideration by the IEEE 1364
working group for inclusion in the next revision of the IEEE 1364 standard.

Cadence Design Systems, Inc. 8/22/2003

2 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Contents

1 Introduction ...5

1.1 Overview ...5

1.2 Scope ...5

2 VPI model UML notation..6

2.1 UML notation quick reference ..6

2.2 VPI interface interpretation of the model ..8

3 VPI class diagrams ..9

3.1 Primitive data types ...9

3.2 Type definitions and declarations..10

3.3 User-defined data types ...10

3.4 Vector data types ...11

3.5 Array data types...12

3.6 Struct and Union data types...12

3.7 Reference data types..13

3.8 Module...14

3.9 Scope ...15

3.10 IO declaration ..16

3.11 Ports...17

3.12 Nets and net arrays ..18

3.13 Reg and reg arrays ...19

3.14 Variables..20

3.15 Net structs and unions ...21

3.16 Reg structs and unions...22

3.17 References ...23

3.18 Object range ..23

3.19 Parameter...24

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. iii
This is an unapproved IEEE Standards Draft, subject to change.

3.20 Expressions..26

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 5
This is an unapproved IEEE Standards Draft, subject to change.

1 Introduction

1.1 Overview

[1] This proposal complements the Cadence data types donation [1] to the Verilog 1364-2001 standard [2] by
providing the specification of the VPI model enhancements for accessing the new data types and declared
objects of these data types. The proposal uses a formal graphical language called UML to describe the VPI
information model. UML stands for “Unified Modeling Language” [3] and is typically used for describing
object oriented software. We believe that using a formal language to represent the VPI information
provides many advantages; this is currently considered by the 1364 PLI task force and is not the direct
object of this proposal.

1.2 Scope

[2] In the data type proposal [1], the existing concept of variable and net objects was enhanced to create a type
system that is orthogonal to the simulation semantic of the object itself. The type system was extended
beyond that of the current language definition by adding user-defined types for enumerations, multi-
dimensional arrays, structures, and dynamically allocated objects. These data type extensions allowed
variables, nets, parameters, ports, and arguments to tasks and functions to be of any type.

[3] The data type proposal made the distinction between the kind of an object (net, variable, event) and the
type of an object. The kind of an object establishes its simulation semantics. The data type of an object
specifies the set of values that the object can hold.

[4] Similarly, the VPI information model is extended to introduce the concept of a data type. Note that the
vpiType of a vpi handle is not the same as the data type of an object. In the remaining of this document, we
will talk about the vpiDataType of an object to denote the set of values that an object is allowed to have,
and we will talk about the vpiType of an object handle when referring to the vpi property which returns the
handle type constant as defined in the vpi_user.h standard header file.

[5] When extending the VPI information model, we took into consideration several requirements to maintain
backward compatibility.

[6] Requirement #1: Old VPI applications should continue to work on designs which do not involve the use of
the new data types. That is, an old application recompiled with the new version of the VPI standard header
file (vpi_user.h) should work exactly the same as before.

[7] Requirement #2: A reasonably written old VPI application should work (and not crash) on designs
involving new data types. That old application may need to be modified in order to access the new data
types objects but the application code contains enough error checking that it can prevent itself from
accessing incorrectly new types of objects. Example of such coding practices is to check for the vpiType of
an object before proceeding, or having a switch on the vpiType of an object and a default case for
unexpected vpiTypes.

Cadence Design Systems, Inc. 8/22/2003

6 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2 VPI model UML notation

[8] The Unified Modeling Language (UML, [3]) is used to describe the VPI information model. UML is a
formal graphical language. It defines a rigorous notation and a meta model of the notation (diagrams) that
can be used to describe object-oriented software design. UML is an OMG standard (Object Management
Group) which is being proposed to the International Organization for Standards (ISO). The following sub
sections provide a quick reference guide to interpret the VPI diagrams. For a more complete specification
of the UML notation, consult [3].

2.1 UML notation quick reference

[9] Class diagrams

[10] We use the class diagram technique of UML to express the VPI information model. A class diagram
specifies the VPI class types and the way classes are connected together. In UML, class inheritance is
denoted by a hollow arrow directed towards the parent class.

[11] A class

[12] A derived class

[13]

[14] An expanded class shows two compartments, the top one displays the properties with their names and
return type, the bottom one displays the operations that are defined for this class. Properties and operations
inherited from parent classes may not appear in the compartment boxes of the derived classes but are
available for all derived classes. In the example above, two properties are defined for the “expr” class: the
“Decompile” and “Size” properties, while a single operation “get_value()” is defined. A additional
property “ConstType” is defined for the class “constant” which is not available for the parent class “expr”.

[15] The link between the “constant” class and the “expr” class shows the inheritance between a derived class
and its parent class. A derived class inherits properties and operations from its parent classes. The hollow
arrow points to the parent class.

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 7
This is an unapproved IEEE Standards Draft, subject to change.

[16] Associations

[17] Relationships between classes are called associations and are denoted by straight lines between classes.
Associations have descriptive parameters such as multiplicity, navigability and role names.

[18] Associations are links between classes that depict their inter-relationships.

[19] Navigability, multiplicity and role names can be used to further describe the relationship.

Navigability expresses the direction of access and is represented by an arrow. An association can be bi-
directional in which case arrows may be shown at both ends.

[20] Multiplicity expresses the type of relationship between the classes: singular (one, zero or one), multiple
(zero or more, one or more) and is represented by numbers at the end of the association to which it applies.
It can be one the following:

[21] 1 for access to one object handle (singular relationship)

[22] 0..1 for access to zero or one object handle (singular relationship)

[23] 0..* for access to zero or more object handles of the same class (iteration relationship)

[24] 1..* for access to one or more object handles of the same class (iteration relationship)

[25] A role name is a tag name on one end of the association. It may be used to indicate more precisely the
relationship or to distinguish this relationship from another relationship that leads to an object of the same
class. In the figure below, “InternalScope” is the name of the relation that accesses an object of class
“scope” from an object of class “module”. The relationship it denotes is an iteration relationship.

[26] In the diagrams, the following convention is used: if a role name is not specified, the method name for
accessing the object pointed by the arrow is the target class name. From the scope class, zero or more
objects of the reg class can be obtained, the default method name is “reg”.

Cadence Design Systems, Inc. 8/22/2003

8 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.2 VPI interface interpretation of the model

When interpreting the VPI class diagrams, “vpi” must be added as a prefix to any class, property, method
or operation name in order to obtain the standard defined constant listed in the VPI standard header file
(vpi_user.h).

A VPI iteration (also called one-to-many method) is modeled by an association with a multiplicity of either
zero or more (0..*), or one or more (1..*) to indicate that the iteration may contain zero handles or will
contain at least one handle. In order to traverse iteration relationships, use vpi_iterate() and vpi_scan(). The
direction or navigability indicates the class of the handles created by the iteration. In the example above,
we show that there is a one-to-many relationship between a “module” class and a “scope” class.

A VPI singular (also called one-to-one method) will be represented by a navigable association with a
multiplicity of one (1) if the method always returns a handle of the destination class or a multiplicity of
zero or one (0..1) if the method may not return a handle. In order to traverse a singular relationship, use
vpi_handle(). In the example above, the diagram shows a one-to-one relationship that allows traversal from
a “scope” class back to the “module” class.

Note that the diagrams only express the possible access flow and not all access is presented in a single
diagram.

A VPI property which appears in the top compartment of a class, can be queried with one of the following
VPI interface functions:

 vpi_get() for a boolean or integer property,

 vpi_get_str() for a string property.

Additional VPI functions can be available for a certain class and are listed in the bottom compartment of
the class. Such functions are for example be vpi_get_value() or vpi_put_value().

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 9
This is an unapproved IEEE Standards Draft, subject to change.

3 VPI class diagrams

[27] Diagrams 3.1 to 3.7 are new diagrams which depict the Verilog data type system. Diagrams 3.8 to 3.20 are
either existing VPI diagrams of the Verilog 1364-2001 which have been modified in order to support the
new data types or new diagrams.

3.1 Primitive data types

[28] Refer to section 2.1 of the data type donation [1].

Cadence Design Systems, Inc. 8/22/2003

10 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.2 Type definitions and declarations

[29] Refer to sections 2.2, 2.9 and 2.10 of the data type donation [1].

3.3 User-defined data types

[30] Refer to section 2.3 of the data type donation [1].

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 11
This is an unapproved IEEE Standards Draft, subject to change.

3.4 Vector data types

[31] Refer to section 2.4 of the data type donation [1].

Cadence Design Systems, Inc. 8/22/2003

12 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.5 Array data types

[32] Refer to section 2.5 of the data type donation [1].

3.6 Struct and Union data types

[33] Refer to sections 2.6 and 2.7 of the data type donation [1].

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 13
This is an unapproved IEEE Standards Draft, subject to change.

3.7 Reference data types

[34] Refer to section 2.8 of the data type donation [1].

Cadence Design Systems, Inc. 8/22/2003

14 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.8 Module

[35] Additional iterations and singular relationships are added in order to access new vpiTypes of objects:
vpiTypedef, vpiRegStruct, vpiRegUnion, vpiRegRef, etc from the module class. The diagram below
depicts the additional traversals to the currently existing VPI module diagram in section 26.6.1 of the
Verilog 1364-2001 LRM.

[36] Notes:

[37] 1. Iterating on vpiTypedefs from a vpiModule handle type returns all the visible typedefs, i.e. declared
outside the module or inside the module. If a typedef is declared outside the module, the boolean property
vpiIsImported shall return TRUE. If a typedef is declared outside a module, the vpiModule method shall
return NULL.

[38] 2. Specific iterations vpiStructVar, vpiUnionVar, vpiReferenceVar are provided. Itetation on variables is
already available in 1364-2001 and is a more general iteration.

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 15
This is an unapproved IEEE Standards Draft, subject to change.

3.9 Scope

[39] Similar additional iterations and singular relationships are added in order to access new vpiTypes of
objects from the scope class. The diagram below depicts the additional traversals to the currently existing
VPI scope diagram in section 26.6.3 of the Verilog 1364-2001 LRM.

[40] Notes: See Notes 1 and 2 in section 3.8.

Cadence Design Systems, Inc. 8/22/2003

16 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.10 IO declaration

[41] An IO declaration can be of any data type. The diagram below shows the additional classes which can be
obtained from a reference handle of vpiType vpiIODdecl when traversing the vpiExpr relationship. Refer
to the VPI diagram in section 26.6.4 of the Verilog 1364-2001 LRM. Instead of adding boolean properties
similar to vpiScalar and vpiVector to indicate whether the iodecl is an array, struct, union or reference type,
a relationship to the data type (vpiDataType) of the iodecl is provided.

[42] Notes:

[43] 1. The vpiDirection property can return an additional value constant: vpiRef to represent a reference io
declaration.

[44] 2. The existing vpiLeftRange and vpiRightRange methods shall return NULL handles if the iodecl is not of
a vector data type.

[45]

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 17
This is an unapproved IEEE Standards Draft, subject to change.

3.11 Ports

[46] An additional one to one method is added to obtain the vpiDatatype of a vpiPort handle. This
complements the existing VPI diagram in section 26.6.5 5 of the Verilog 1364-2001 LRM.

Cadence Design Systems, Inc. 8/22/2003

18 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.12 Nets and net arrays

[47] This diagram replaces the existing VPI diagram for net arrays in section 26.6.6 of the Verilog 1364-2001
LRM.

[48] Notes:

[49] 1. The vpiNetType property for a vpiNet or vpiNetBit can return the additional constant value of vpiWone.

[50]

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 19
This is an unapproved IEEE Standards Draft, subject to change.

3.13 Reg and reg arrays

[51] This diagram replaces the existing VPI diagram for reg arrays in section 26.6.7 of the Verilog 1364-2001
LRM.

[52]

Cadence Design Systems, Inc. 8/22/2003

20 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.14 Variables

[53] This diagram replaces the existing VPI diagram in section 26.6.8 of the Verilog 1364-2001 LRM.

[54]

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 21
This is an unapproved IEEE Standards Draft, subject to change.

3.15 Net structs and unions

This is a new diagram.

Cadence Design Systems, Inc. 8/22/2003

22 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.16 Reg structs and unions

This is a new diagram.

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 23
This is an unapproved IEEE Standards Draft, subject to change.

3.17 References

This is a new diagram.

3.18 Object range

[55] This diagram replaces the existing VPI diagram in section 26.6.10 of the Verilog 1364-2001 LRM.

[56]

Cadence Design Systems, Inc. 8/22/2003

24 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.19 Parameter

[57] The following diagrams replace the existing parameter and param assign diagrams in section 26.6.12 of the
Verilog 1364-2001 LRM.

[58]

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 25
This is an unapproved IEEE Standards Draft, subject to change.

[59]

Cadence Design Systems, Inc. 8/22/2003

26 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.20 Expressions

[60] The following diagrams supplements the existing VPI diagram in section 26.6.26 of the Verilog 1364-2001
LRM. The vpiNullRef type represents the null value of a reference type. The vpiConstConcat type
represents constant array and struct concatenation expressions. See section 4.3 in the Cadence data type
proposal [1]. The vpiConstConcat class inherits from the expr class.

[61] Notes:

[62] 1. The vpiConstType property shall return an additional defined constant vpiNullConst which represents
the null value of a reference type object.

[63] 2. The vpiOptType property of a vpiOperation type handle shall return additional defined constants
vpiArrayConcat and vpiStructConcat. Refer to section 4.3 of the Cadence data type donation proposal [1].

8/22/2003 Cadence Design Systems, Inc.

 Copyright (c) 2003 Cadence Design Systems, Inc. All rights reserved. 27
This is an unapproved IEEE Standards Draft, subject to change.

Annex A: References

[1] Cadence proposal for extending Verilog data types.

[2] IEEE Std 1364-2001, IEEE Standard Verilog Hardware Description Language.

[3] OMG UML Unified Modeling Language v. 1.3, Object Management Group, June 1999.

